PACE INSTITUTE OF TECHNOLOGY \＆SCIENCES：：ONGOLE （AUTONOMOUS）

II B．TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS，MARCH／APRIL－ 2023 THERMODYNAMICS
（ME Branch）
Time： 3 hours
Max．Marks： 60
Note：Question Paper consists of Two parts（Part－A and Part－B）
PART－A
Answer all the questions in Part－A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q．No．		Questions	Marks	CO	KL
1	a）	Define Specific Heat at Constant Pressure and Constant Volume．	$[2 \mathrm{M}]$	1	
	b）	Write Kelvin－Plank And Clausius Statements．	$[2 \mathrm{M}]$	2	
	c）	What do you understand by triple point？	$[2 \mathrm{M}]$	3	
	d）	Atmospheric air at $20^{\circ} \mathrm{C}$ DBT and $15^{\circ} \mathrm{C}$ WBT is undergoing an adiabatic saturation process，show the process on psychometric chart．	$[2 \mathrm{M}]$	4	
	e）	What do you mean by Cluster？	$[2 \mathrm{M}]$	5	

PART－B
Answer One Question from each UNIT（5X10＝50M）

6.		State Kelvin-Plank and Clausius statements of Second law of Thermodynamics and prove their equivalence.	[10M]	3	
OR					
7.		In a separating and throttling calorimeter the pressure of the steam before throttling is 10bar. The pressure and temperature of steam after throttling is 1.1 bar and $110^{\circ} \mathrm{C}$ respectively. At the separator 0.6 kgs of water is trapped and 3.4 kgs of condensed water is collected from the condenser. Determine the dryness fraction of steam in the main pipeline. Take Cp for superheated steam $2.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}$	[10M]	3	
UNIT-IV					
8.	a)	Explain the terms Mole fraction and Volume fraction.	[5M]	4	
	b)	Air at $200 \mathrm{C}, 40 \% \mathrm{RH}$ is mixed adiabatically with air at $40^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ in the ratio of 1 kg of former with 2 kg of the latter (on dry basis). Find the final condition of air.	[5M]	4	
OR					
9.		What is quality of steam? What are the different methods of measurement of quality? Explain them with neat sketches.	[10M]	4	
UNIT-V					
10.		Derive an expression for thermal efficiency of Otto cycle.	[10M]	5	
OR					
11.		The compression ratio of an air-standard Otto cycle is 9.5 . Prior to the isentropic compression process, the air is at $100 \mathrm{kPa}, 35^{\circ} \mathrm{C}$, and 600 cm 3 . The temperature at the end of the isentropic expansion process is 800 K . Using specific heat values at room temperature; determine (a) the highest temperature and pressure in the cycle; (b) the amount of heat transferred in, in kJ ; (c) the thermal efficiency; and (d) the mean effective pressure.	[10M]	5	

